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Abstract

We propose hypothesis testing methods to examine positive assorta-
tive mating that impose fewer restrictions than existing approaches, such
as Siow (2015). Our pseudo-Wald test performs better under weak assor-
tative mating and moderate sample size, leveraging the full information
of the sample. The test statistics provide closed-form expressions, making
them straightforward to implement. Empirical applications using CPS
data confirm that our methods are robust in testing positive assortative
mating on relative wage.

1 Introduction

This paper proposes easy hypothesis testing methods to test for positive as-
sortative mating (PAM). A number of empirical studies on sorting in the mar-
riage market have investigated the intensity of assortative mating and how the
strength of assortative mating has changed over time using structural (Green-
wood et al., 2014; Chiappori et al., 2017; Gualdani and Sinha, 2023) or non-
structural (Liu and Lu, 2006; Eika et al., 2019) approaches. Meanwhile, only a
handful of econometric tests have been developed for testing PAM that practi-
tioners can readily apply without specifying a structural model (Anderson and
Leo, 2013; Siow, 2015).

Broadly, the literature examining PAM features two main approaches. The
first constructs indices of sorting, typically by comparing observed match prob-
abilities to counterfactual match probabilities under random pairing. This
method measures the intensity of sorting without explicitly modeling individ-
ual preferences. Notable examples in this vein include Liu and Lu (2006) and
Eika et al. (2019).1 While Liu and Lu (2006) construct descriptive indices of
assortative mating and Eika et al. (2019) develop indices and further examine

1Fernández and Rogerson (2001), Greenwood et al. (2014), and Abbott et al. (2019) apply
similar ideas in the marital matching stage of their structural models.
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trends and decompositions, neither study provides a formal hypothesis test or
statistical inference procedure to determine the presence of positive assortative
mating.

Another strand of literature is a choice-based framework initiated by Choo
and Siow (2006b). They propose a marriage matching function, which is based
on the transferable utility matching framework with random preferences.2,3 The
critical assumptions of Choo and Siow (2006b) are (a) additive separability of
joint surplus, (b) a large marriage market, and (c) an extreme value distribution
of the shock (Galichon and Salanié, 2021a). Choo and Siow (2006a) applied the
marriage matching function to quantify the effect of the legalization of abortion
on gains to marriage.

Building on the transferable utility framework, subsequent studies have ex-
tended the Choo and Siow (2006b) model in multiple directions. For instance,
Chiappori et al. (2017) incorporate parental investment into a structural mar-
riage model, embedding it in the original Choo and Siow formulation to measure
changing returns to education in the U.S. marriage market. Mourifié and Siow
(2021) introduce peer effects, Dupuy and Galichon (2014) adapt the framework
to continuous attributes using Dagsvik’s (1994; 2000) continuous choice struc-
ture, and Galichon and Salanié (2021b) show that the extreme value assumption
can be relaxed. In a related vein, Fernández and Rogerson (2001) use a search
model that delivers PAM but focus on how the degree of sorting correlates with
wage gaps and other economic variables. While these structural approaches are
powerful for understanding matching behaviors, they often require significant
effort in terms of modeling and computation.

Siow (2015) proposes a test based on maximum likelihood estimation (MLE)
within the Choo and Siow (2006a) framework, mainly focusing on two key re-
strictions: total positivity of order two (TP2) and diagonal positivity of or-
der two (DP2). While these constraints can be effective for strong assortative
matching, they often perform poorly or become overly restrictive when assorta-
tive mating is weak, and is less effective when sample size is small or moderate.
Also, the associated test statistics exhibit non-standard asymptotic distribu-
tions.

Compared to existing methods for testing PAM, our methods are straightfor-
ward to implement and impose no restrictions on the data-generating process.
They exploit the full sample information and are robust to outliers. Our tests
provide closed-form solutions and thus do not require numerical optimization.

We first define our pseudo-Wald and Likelihood Ratio tests and investi-
gate their distributional properties. The resulting closed-form test statistics
are straightforward to implement and computationally efficient, offering strong
power while maintaining ease of use. Secondly, we compare our methods with

2See Chiappori and Salanié (2016) for the survey of the empirical marriage matching models
under different assumptions: transferable utility, non-transferable utility, and imperfectly
transferable utility models.

3See Fox (2010), Fox (2018), and Fox et al. (2018) for an alternative method employing a
maximum score approach based on the rank-order property associated with sorting. See Suen
and Lui (1999) for a correlation-based test.
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the restriction-based method of Siow (2015). Our pseudo-Wald test is more ro-
bust in weak assortative matching and performs better when sample size is small
(N = 500) or moderate (N = 2, 000). For large sample size (N = 120, 000),
both tests provide support for PAM.

Finally, we provide two empirical applications of matching based on wage
and matching in same-sex marriage. Our tests conclude PAM on predicted
wage while tests of Siow (2015) find PAM on education. Both tests find PAM
in same-sex marriage.

We explain our proposed tests in Section 2. In Section 3, we compare the
performance of both approaches under varying intensities of assortative mating.
Section 4 provides empirical examples. We conclude in Section 5.

2 Alternative Tests

Our tests differ from Siow (2015) in the way they utilize unrestricted MLE
estimates of the matching cells. While Siow (2015) performs a likelihood ratio
test with different restrictions, we directly evaluate the test statistics using the
estimates of matching cells. In this section, we explain the differences of these
two methods.

2.1 Review of Siow (2015)

Suppose there are I types of men, i = 1, 2, . . . , I, and J types of women,
j = 1, 2, . . . , J , where types are vertically ordered. Let nij be the number
of observations where a type-i male is matched with a type-j female, and define

N =

I∑
i=1

J∑
j=1

nij

as the total number of sampled marriages. Let pij be the probability that a
randomly sampled marriage is of type ij. Following Siow (2015), consider the
unrestricted likelihood problem:

max
{pij}

I∑
i=1

J∑
j=1

nij log pij (1)

subject to

I∑
i=1

J∑
j=1

pij = 1.

The unrestricted MLE of {pij} is

p̂u =
{
p̂uij

}
with p̂uij =

nij

N
.

Siow (2015) and related work note that one way to test for PAM is to re-
estimate p̂ under restrictions consistent with PAM, and then perform a like-
lihood ratio test. The main restrictions considered in Siow (2015) are total

3



positivity of order 2 (TP2) and diagonal positivity of order 2 (DP2).4 Both
restrictions rely on the local log-odds ratio for (i, j), which is defined as

Rij = log pij + log pi+1,j+1 − log pi,j+1 − log pi+1,j . (2)

Here, Rij measures how strongly types i and j complement each other relative
to cross-type matches (i, j + 1) and (i+ 1, j).

TP2 Restriction. The TP2 condition states that all such local log-odds ra-
tios are strictly positive for all matching cells:

Rij > 0 for all i = 1, 2, . . . , I − 1 and j = 1, 2, . . . , J − 1 (3)

which is equivalent to the case that the underlying matching surplus function
is supermodular (Siow, 2015).5

DP2 Restriction. DP2 focuses on local log-odds ratios only along the same
type diagonal (e.g., (i, i+ 1)), which is defined as

Rii > 0 for all i = 1, 2, . . . ,min(I, J)− 1. (4)

In addition to the primary TP2 and DP2 constraints, Siow (2015) proposes
several modifications. In particular, TP2′ imposes the condition Rij > 0 except
for the top-right and bottom-left matchings. While this exclusion aims to miti-
gate the influence of extreme or sparsely populated matches, it can arbitrarily
discard valuable information; moreover, outliers may arise in other corner cells
not explicitly omitted by this rule.

On the one hand, it is not clear which of the restrictions in Siow (2015) are
more suitable to assess PAM.6 For example, the log-likelihood with the TP2
restriction is rejected against the unrestricted likelihood, but the log-likelihood
with the DP2 restriction is not rejected. Siow (2015) states that the rejection
of the TP2 likelihood is driven by the couples whose completed education is
distant. As the extreme matches account only for less than 0.2% of marriages,
the TP2 restriction is arguably sensitive to such outliers.7

On the other hand, the null hypothesis in Siow (2015) is a space with positive
measure, and the alternative hypothesis is a region with positive measure. To
see this, consider a simple case where there are just two types of men and two
types of women. The parameter space is the unit square, and the condition for
PAM is

p11 + p22 − p12 − p21 ≥ 0

4The term “order” refers to the dimension of the determinants for the matching matrix.
5See Choo and Siow (2006b) for the descriptions of the underlying structural model.
6Chiappori et al. (2017) also propose a test based on their structural model that incorpo-

rates returns to parental investment. Their method requires using minimum distance of the
moment conditions that come from their structural model. The main purpose of this test is
to examine the changes in the intensities of educational homogamy.

7Anderson and Leo (2013) develop a test statistic very similar to the TP2 test in Choo
and Siow (2006b).
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which simplifies to
p11 + p22 ≥ 1. (5)

The region consistent with the null hypothesis is all values of (p11, p22) that
satisfy equation (5), and the region consistent with the alternative hypothesis
is the part of the unit square that does not satisfy equation (5). This is an un-
common problem in the literature. Meanwhile, our testing problem is standard:
the null hypothesis is a point, and the alternative is a region surrounding the
point.

A similar example of interest in the literature is testing a unit root hypoth-
esis for a time series. Almost all of the literature on testing for a unit root
assumes that the null hypothesis is nonstationarity. A strong reason for making
this assumption instead of stationarity being the null hypothesis is that, when
nonstationarity is the null hypothesis, it can be represented by a single AR(1)
parameter equalling 1. Thus, the situation is turned into a standard case where
the null hypothesis corresponds to a point. However, from an economic point
of view, the null hypothesis should be stationarity in that the model behaves
better when there is stationarity (we would like to not reject the null hypothe-
sis and then rely on the nice properties of stationary processes). Alternatively,
Kwiatkowski et al. (1992), Leybourne and McCabe (1994), and Xiao (2001) all
use a null hypothesis of stationarity by constructing a time series model with a
random walk where the random walk is the only source of nonstationarity. The
null hypothesis is then that the variance of the random walk error is equal to
zero.

A second example, much closer to our problem, is to test whether the Slutsky
substitution matrix is negative semidefinite. Gill and Lewbel (1992) choose a
null hypothesis of semidefiniteness (which has positive measure) and show how
to construct a consistent test statistic. Gill and Lewbel (1992) state that the
asymptotics of this problem are very similar to that in Kodde and Palm (1986)
where the null and alternative hypotheses have positive measure.8 An easier
approach is to construct a Wald test, requiring only the unrestricted estimates.9

Though it does not deal with the nonstandardardness of the test, it avoids the
cost associated with imposing the positive assortative mating restrictions, and
it allows for more general tests.

Researchers have developed different methods to test hypotheses related to
assortative mating, although not all directly focus on assessing the positivity of
assortative mating. For instance, Chiappori et al. (2017) focus on the change
of the degree of educational assortative mating over time. They reject the
null hypothesis that the degree of educational assortative mating has remained
constant over time. Mourifié and Siow (2021) propose a Cobb-Douglas mar-
riage matching function and emphasize the significance of peer and scale effects
in marital matching. Gualdani and Sinha (2023) employ a set identification

8Unfortunately, Cragg and Donald (1996, 1997) show that the asymptotics for a related
rank condition are incorrect, and neither paper addresses the correctness of the argument of
Gill and Lewbel (1992) about testing for semidefiniteness.

9It is not clear which should be considered the restricted model and which the alternative.
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approach with nonparametric distributional assumptions on unobserved het-
erogeneity. Their findings indicate the presence of positive educational sorting
among less educated couples.

2.2 A Pseudo-Wald Test

In the next two subsections, we develop a pseudo-Wald test, a likelihood ra-
tio test, and a Lagrange multiplier test. We start with the pseudo-Wald test.
Using the local odds-ratios defined in equation (2), we test the null hypothesis
that Rij = 0 ∀ij with power against the alternative of (positive or negative)
assortative mating with ∑

i,j

R̂2
ij

s2ij
∼ χ2

K

where
R̂ij =

(
log p̂uij + log p̂ui+1,j+1

)
−
(
log p̂ui+1,j + log p̂ui,j+1

)
,

s2ij = V ar
[(
log p̂uij + log p̂ui+1,j+1

)
−
(
log p̂ui+1,j + log p̂ui,j+1

)]
≈ (1− pij)

Npij
+

(1− pi+1j+1)

Npi+1j+1
+

(1− pi+1,j)

Npi+1,j
+

(1− pi,j+1)

Npi,j+1
,

using a first-order Taylor series approximation, and

K = (I − 1) (J − 1) .

Contrast to Siow (2015) which uses the criteria for PAM (such as TP2 or DP2) as
a null, our pseudo-Wald test adopts non-assortative mating as a null hypothesis.

Our pseudo-Wald statistic aggregates all local log-odds ratios {R̂ij} in a
single summation which allows us to exploit all information in the sample si-
multaneously without discarding thinly populated cells or imposing stronger
global restrictions. When some matching cells are close to zero and others
are far from zero, the pseudo-Wald test statistic captures the net effect—i.e.,
whether the overall “signal” of PAM outweighs zero assortative matching in
certain subgroups.

2.3 Likelihood Ratio Test and Lagrange Multiplier Test

Also note that the MLE of p under the restriction of random mating is p̂r ={
p̂rij

}
where

p̂rij = x̂iŷj , x̂i =

∑
j nij

N
, ŷj =

∑
i nij

N
.
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Thus, one could test the null hypothesis of random mating against a general
alternative with a likelihood ratio (LR) test,

TLR = 2

∑
i,j

nij log p̂
u
ij −

∑
i,j

nij log p̂
r
ij


= 2

∑
i,j

nij log
p̂uij
p̂rij


= 2

∑
i,j

nij log
p̂uij

(
∑

k p̂
u
ik)

(∑
k p̂

u
kj

)
 ∼ χ2

K

(which requires only estimation of p̂u) with

K = IJ − 1

which is larger than the degrees of freedom in for the Wald test. This difference
exists because, for the Wald test, one loses degrees of freedom at i = I and j = J
as it requires to have i = I + 1 and j = J + 1. This is not the case for the LR
test.

Alternatively, one could construct a Lagrange Multiplier (LM) test. Let

L =
∑
i,j

nij log pij .

Then,

∂L

∂pij
| pij=p̂r

ij
=

nij

p̂rij

=
nij∑

k nik

N

∑
k nkj

N

=
Np̂uij

(
∑

k p̂
u
ik)

(∑
k p̂

u
kj

)
implying that the LM has the same form and the same distribution as the LR
test.

3 Properties of the Proposed Tests

The simulation-based finite-sample analysis in this section offers a pragmatic
alternative to asymptotic theory, when closed-form test statistic is not avail-
able. We first specify an auxiliary model of assortative mating, which we use
to (i) simulate the distribution of our test statistics and (ii) to compare our
test methods with the tests of Siow (2015). Define a male as having an integer
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Figure 1: Density from 1 to M (F)

value of xi between 1 and 5, and define a female as having an integer value of
xj between 1 and 5. Assume that the density of matches in an economy is

f (xi, xj) =
exp {−α |xi − xj |+ εi,j}∑I

x
′
i=1

∑J
x
′
j=1 exp

{
−α

∣∣x′
i − x

′
j

∣∣+ εi,j
} (6)

where εi,j ∼ N(0, σ2).10,11 We first analyze the distribution of test statistics.12

Then, we empirically compare performances of our tests with the tests in Siow
(2015).

3.1 Distribution of Test Statistics

Figure 1 shows the contour of f (xi, xj) as (xi, xj) moves from (1, 5) to (5, 1) for
α = 0, 0.1, 0.4, and 0.8. As α increases, assortative mating becomes stronger,
with increased density along the diagonal where difference in coordinates is 0.

Figure 2 shows the distributions of the pseudo-Wald test statistics for sam-
ples of 500, 2, 000, and 10, 000 when α = 0 along with the χ2

16 distribution.13

The χ2
16 distribution exhibits less variance than the pseudo-Wald test statistics

for samples of at least 2, 000, and it stochastically dominates the pseudo-Wald
test statistic distribution for a sample of 500. The 5% critical value for the
χ2
16 distribution is off by a meaningful amount relative to the simulated Wald

test statistic distributions. The 5% critical value for a test statistic with a
χ2
16 distribution is 26.3, while the pseudo-Wald test statistics with sample sizes

500, 2, 000, and 10, 000 are respectively 32.3, 32.67, and 31.89. The differences
among the three occur because the simulated Wald test statistic provides the

10Note that
∑I

xi=1

∑J
xj=1 f (xi, xj) = 1.

11Also, note that this is somewhat like a triangle kernel function with α = b−1 where b is
the bandwidth (Kokonendji and Zocchi, 2010).

12We fix εi,j = 0 in analyzing the distribution.
13The degrees of freedom are (M − 1)(F − 1).
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Figure 2: Distribution of Pseudo-Wald Test Statistic for α = 0

small-sample distribution of the test statistic, while the simulated LR test relies
significantly on asymptotic approximations. These discrepancies arise because
the χ2

16 curve is an asymptotic approximation, while the simulated distribution
reflects the finite-sample distribution of the pseudo-Wald statistic. In practice
this mismatch is a minor issue, since researchers can bootstrap the test’s null
distribution and use those empirical critical values instead of the χ2

16.
Figure 3 shows the distributions of the LR test statistic for samples of 500,

2, 000, and 10, 000 when α = 0 along with the χ2
24 distribution. The χ2

24

distribution stochastically dominates the LR test statistic distributions for all
three sample sizes. The 5% critical value for the χ2

24 distribution is off by
a meaningful amount relative to the simulated LR test statistic distributions.
The 5% critical value for a test statistic with a χ2

24 distribution is 36.42, while,
for the LR test statistic distributions with sample sizes 500, 1, 000, and 10, 000,
they are respectively 26.54, 26.38, and 26.36.

Figure 4 shows the power functions for both test statistics for different values
of α using the 5% critical values under the null hypothesis of α = 0. The pseudo-
Wald test statistic has weak power for sample sizes less than 10, 000, and the
LR test statistic has very strong power. Part of the good performance of the
LR test statistic relative to the pseudo-Wald test statistic is due to it having
more degrees of freedom. Also, the LR test statistic distribution is dominated
by the χ2

24 distribution (Figure 3) while the pseudo-Wald test statistic is not
dominated by the χ2

16 distribution (Figure 2); i.e., the LR test statistic has more
power than implied by its χ2

24 asymptotic distribution while the pseudo-Wald
test statistic does not have more power than its χ2

16 asymptotic distribution.
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Figure 3: Distribution of LR Test Statistic for α = 0

Figure 4: Power for Proposed Tests
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3.2 Empirical Comparison

We compare our Wald and Likelihood Ratio (LR) tests with the TP2 and DP2
tests in Siow (2015). The purpose of this exercise is to investigate whether each
test can effectively reject PAM when assortative mating is sufficiently weak, and
whether each test can detect PAM when assortative mating is present.

The estimated assortative mating intensity α for the 2000 Census dataset
is 0.798≈0.8.14 Starting from this value, we simulate the DGP and generate
synthetic datasets with weaker assortative mating of α = 0.4, 0.1 and 0. We use
three levels of sample size: 500, 2,000, and 120,000. In this exercise, we fix σε

to 0.1. Then, we apply each of the four tests and compare their performance in
testing PAM.

Table 1: Verdict for Positive Assortative Mating (PAM) by Four Methods

α = 0 α = 0.1 α = 0.4 α = 0.8

n Wald LR TP2 DP2 Wald LR TP2 DP2 Wald LR TP2 DP2 Wald LR TP2 DP2

500 N N P P N N P P P P P P P P P P

2000 N N P P N N P P P P P P P P P P

120000 P P N P P P N P P P N P P P N P

Notes: Wald and LR refer to the proposed Pseudo-Wald and Likelihood Ratio Tests, respectively. TP2 and DP2 refer to
tests by Siow (2015). “P” indicates PAM, and “N” indicates no PAM.

Table 1 presents the results of applying our Wald and LR tests and the TP2
and DP2 of Siow (2015). N indicates no support for PAM, and P indicates the
support for PAM. Since rejection of our tests versus Siow’s tests implies opposite
conclusions about PAM, this notation is introduced to alleviate confusion. Table
2 reports the detailed results. It is worth noting that (α, n) = (0.8, 120, 000)
closely matches the application of Siow (2015). Our findings replicate theirs:
TP2 is rejected while DP2 is not rejected under the parameter/sample-size pair.

For weak assortative mating of α = 0 and 0.1, the two tests yield opposite
results. Our proposed pseudo-Wald and LR tests reject PAM for sample sizes of
500 and 2, 000. On the other hand, TP2 and DP2 of Siow (2015) support PAM.
The results suggest that under moderate sample sizes, our tests successfully
reject PAM when assortative mating intensity is weak (α = 0.1) or there is no
PAM (α = 0). For large sample sizes, our Wald, LR tests and DP2 of Siow
(2015) supports PAM.

All tests consistently support PAM when α = 0.4 and α = 0.8. This is consis-
tent with findings of previous papers analyzing PAM around 2,000 (Greenwood
et al., 2014; Chiappori et al., 2017). At the same time, when the sample size
is very large, all four tests produce consistent results. Our Wald and LR tests
reject the zero assortative mating. For Siow (2015), DP2, as a criteria for PAM,
is not rejected, thus support PAM. TP2 is rejected, but again, this is consistent
with their results.

14The same data is used in the empirical application of Siow (2015).
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Table 2: Test Statistics by N and α

N α = 0.0 α = 0.1 α = 0.4 α = 0.8

Panel A: Proposed Pseudo-Wald
500 19.92 20.50 38.12∗∗ 96.01∗∗∗

2000 29.72 35.73∗ 101.37∗∗∗ 348.36∗∗∗

120000 847.95∗∗∗ 1093.76∗∗∗ 5183.76∗∗∗19926.79∗∗∗

Panel B: Proposed LR Test
500 19.23 25.99 110.31∗∗∗ 310.02∗∗∗

2000 28.71 52.00∗∗ 382.76∗∗∗ 1219.64∗∗∗

120000 782.29∗∗∗ 2225.41∗∗∗21820.48∗∗∗71478.45∗∗∗

Panel C: TP2 of Siow (2015)
500 15.69 11.21 9.17 8.63
2000 23.33 16.76 11.94 10.98

120000 638.38∗∗∗ 401.57∗∗∗ 333.50∗∗∗ 238.77∗∗∗

Panel D: DP2 of Siow (2015)
500 2.07 1.24 0.02 7.8e−7
2000 3.55 1.06 9.8e−5 1.2e−6

120000 92.21∗ 20.35 1.3e−5 3.4e−5

Note: * p ≤ 0.10, ** p ≤ 0.05, *** p ≤ 0.01. In computing p, we use
χ2
k for Pseudo-Wald and LR Tests and parametric bootstrap for TP2

and DP2.

Table 3: CPS 2000 Matching Table

(a) Matching Table by Education

Below High High Some Col Bachelor Graduate

Below High 0.101 0.048 0.018 0.003 0.001
High 0.040 0.191 0.075 0.021 0.004

Some Col 0.014 0.079 0.118 0.032 0.007
Bachelor 0.002 0.032 0.048 0.073 0.014
Graduate 0.001 0.008 0.016 0.033 0.025

(b) Matching Table by Predicted Wage Quintiles

Q1 Q2 Q3 Q4 Q5

Q1 0.101 0.050 0.034 0.011 0.004
Q2 0.054 0.040 0.060 0.030 0.016
Q3 0.028 0.042 0.047 0.056 0.027
Q4 0.013 0.039 0.030 0.058 0.060
Q5 0.005 0.029 0.029 0.044 0.093

Notes: Entries are matching probabilities. Rows denote male spouse’s category, and columns denote fe-
male spouse’s category.
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4 Empirical Applications

4.1 Assortative Mating on Predicted Wage

We test PAM using predicted wages based on within-gender wage deciles from
the CPS March 2000 sample (N = 12,497 married households). Compared with
discrete measures, using wage provides a finer, continuous metric of assortative
mating. Also, the rank measure is scale-invariant and robust to outliers.15 We
employ a two-step estimation procedure (Heckman, 1979) and use predicted log
wages to construct our predicted wage measures.16

Table 5: Comparison of Predicted Wage Quintile Example

Test Statistic p-value Assortative Mating

Kang–Stern (pseudo-Wald) 648.038 < 0.001 P
Kang–Stern (LR) 4420.734 < 0.001 P
Siow TP2 67.031 < 0.001 N
Siow DP2 13.101 < 0.001 N

Note: For proposed methods, the null hypothesis is zero assortative mating. For Siow’s
methods, the null hypothesis implies PAM. In computing p, we use χ2

k for Pseudo-Wald
(k = 16) and LR Tests (k = 24) and parametric bootstrap for TP2 and DP2.

Table 3 presents the contingency tables by (a) education and (b) predicted
wage quintiles.17 Compared to the five-category education matrix, the wage-
rank table exhibits greater dispersion from the main diagonal, reflecting within-
education variation captured by rank measures. The diagonal components in
the education matching table (Table 4a) sum to 0.508, but those in the wage-
rank matching table (4b) sum to only 0.339, indicating greater dispersion in the
predicted wage matching table.

Table 5 reports the results of the four tests using predicted wage deciles.
The pseudo-Wald and likelihood-ratio (LR) statistics strongly reject the null
of no assortative mating (p< 0.001), consistent with the strong PAM found in
the literature (Greenwood et al., 2014; Chiappori et al., 2017). Siow’s TP2 and
DP2 statistics reject PAM, presumably because its restriction based methods
are sensitive to the off-diagonal elements.

4.2 Assortative Mating in Same-Sex Marriage

Finally, we analyze same-sex married couples using the 2019 Census data. Table
6 presents the results. The sample size for same-sex married couples is 1,645,

15Several studies have employed income rank as the measure of assortative mating (Fagereng
et al., 2022; Holmlund, 2022; Almås et al., 2023).

16We explain the procedure in Appendix B. See Carroll et al. (2021) for the more detailed
explanations and the results of the estimation.

17While the literature often employs deciles (Fagereng et al., 2022), we use quintiles for
fair comparison with educational assortative mating, which usually has five discrete measures.
The results of our tests are robust to the number of matching indices.
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consisting of 695 male couples and 950 female couples. Our test supports PAM
in aggregated, male, and female samples. Both pseudo-Wald and LR tests
strongly reject the null of zero assortative mating. Interestingly, Siow’s DP2
results indicate PAM for male same-sex couples.18

Table 6: Positive Assortative Mating for Same-Sex Married Couples

Sample Test Statistic p-value Assortative Mating

Both pseudo-Wald 218.38 < 0.001 P
Both LR 676.64 < 0.001 P
Both TP2 3.62 0.507 P
Both DP2 0 0.447 P

Male pseudo-Wald 132.23 < 0.001 P
Male LR 286.52 < 0.001 P
Male TP2 14.39 0.018 N
Male DP2 4.2e−6 0.244 P

Female pseudo-Wald 103.73 < 0.001 P
Female LR 410.13 < 0.001 P
Female TP2 1.64 0.611 P
Female DP2 1.7e−5 0.018 N

Note: For proposed methods, the null hypothesis is zero assortative mating. For Siow’s
methods, the null hypothesis implies PAM. In computing p, we use χ2

k for Pseudo-Wald
and LR Tests and parametric bootstrap for TP2 and DP2. For DP2 results of both
samples, the statistic is less than the machine precision, so we report as 0.

5 Conclusion

We develop empirical tests for PAM that are straightforward to implement and
outperform existing methods. Our pseudo-Wald test performs well, particularly
when assortative mating is weaker and sample sizes are moderate, providing
advantages over existing tests. Empirical applications using CPS and Census
data confirm that our methods effectively detect PAM on wage, confirming their
practical value.

18In contrast, Ciscato et al. (2020) find weaker assortative mating for male same-sex couples
using California samples between 2008-2012.
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Appendix

A Data

2019 Current Population Survey (CPS) ASEC

We use 2000 and 2019 CPS for the wage and the same-sex marriage analysis,
respectively. The working sample is defined by the following sequential selection
rules:

1. Age. Keep only households in which both spouses are aged 16–64. This
removes roughly 7–13% of observations, depending on year

2. Marital status. Retain legally married couples; exclude widowed, di-
vorced, never-married and co-habiting pairs This step eliminates about
one-half of the raw sample in recent years.

3. Employment class. Exclude households in which either spouse is self-
employed, works for government, or is on active military duty, following
Siow (2015). The rule removes 10–15% of couples each year

4. Missing or implausible data. Drop observations with missing school-
ing, race, region, or hours/weeks information and discard hourly wages
below the year-specific real federal minimum wage

2000 Census

We replicate the selection rules used by Siow (2015). Because identical filters
are applied, our Census contingency tables are identical to those in Siow (2015).

B Heckman Two-Step Wage Prediction

First, for each gender and year we estimate a probit

y∗ij = Xijβ + εij , yij = 1{y∗ij > 0},

where Xij includes a quadratic in age, race dummies, four education dummies,
region, metro status and, for women, an indicator of at least one child under 5
years old.

Second, on the working subsample we estimate

wij = Zijγ + σuρ λij + uij ,

where Zij = Xij excluding the young-child variable (an exclusion restriction)

and λij = φ(Xij β̂)/Φ(Xij β̂) is the inverse Mills ratio. Then, We compute

w̃ij =

{
Zij γ̂ + σ̂uρ̂ λij , if yij = 1,

Zij γ̂ − σ̂uρ̂ λij , if yij = 0,

and use w̃ij to generate quintiles of wage.
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